Radiometric Response Functions in OpenCV

I recently started reading up on how to construct composite high-dynamic-range (HDR) images programmatically. The reason why is because I had been thinking about why traditional cameras have dropped the ball on in-camera HDR when compared to their mobile phone brethren (that’s a thought for another day). There are a number of approaches for building HDR images in computer vision literature. While they differ in how to produce their final output, where they are alike is in their need for the radiometric response function of the imaging pipeline creating the images for the HDR algorithm.

Continue reading “Radiometric Response Functions in OpenCV”

First Experiences with Scikit-Learn

I recently made a submission to one of Kaggle’s introductory machine learning competitions. The Python code that I wrote was built upon code I wrote for the Coursera Machine Learning by Stanford class in GNU Octave. For the course we put together implementations of common machine learning models, one of those being the logistic regression model I wanted to use for the aforementioned Kaggle competition. I hadn’t written code in Python in a while and felt that porting those models from GNU Octave to Python/Pandas/NumPy would be a great way of getting familiar with the language again. Continue reading “First Experiences with Scikit-Learn”

PyCharm GitHub Integration

I use PyCharm for my Python development needs and up until recently I had not been using any sort of version control. I was able to use PyCharm’s provided plugins to connect my project to a remote GitHub repository and felt that others may find a write-up useful for saving time during setup. Continue reading “PyCharm GitHub Integration”

Completed Machine Learning by Stanford University Course on Coursera

This post is a bit behind schedule but better late than never as they always say. On October 15th I completed the Machine Learning by Stanford University course on Coursera. I had been interested in making a start in machine learning and hoped that the course would provide a good foundation for building upon.

Continue reading “Completed Machine Learning by Stanford University Course on Coursera”